‘카운터 테러리즘’ 분야 급부상… 방정식-알고리즘 등 활용해
테러조직 행동예측-무력화 연구
최근 전 세계가 테러를 막기 위해 노력하는 가운데 수학으로 폭력에 맞서는 방법이 주목 받고 있다. 미국에서 벌어진 9·11테러 이후 일부 학자를 중심으로 창시한 ‘카운터 테러리즘 수학(테러 대응 수학)’이라는 분야다. 이들은 총과 폭탄이 아닌 방정식과 알고리즘을 무기로 테러리스트의 행동을 예측하거나 테러 조직을 무력화시키는 방법을 연구한다.
조너선 팔리 미국 모건주립대 수학과 교수는 카운터 테러리즘을 연구하는 대표적인 수학자다. 9·11테러를 계기로 미국 중앙정보국(CIA), 자메이카 국가안보부 등과 공동으로 수학으로 테러 계획을 저지하는 방법을 연구했다. 팔리 교수는 9·11테러를 일으킨 테러 조직 알카에다를 사례로 연구한 결과를 국제학술지 ‘갈등 및 테러리즘 연구’ 2003년 6월호에 발표하며 수학과 테러 대응 방법을 접목했다. 그는 은밀하게 감춰진 방대한 테러 단체의 연계망을 파괴하는 방법을 제시했다. ‘부분 순서 집합’이라는 수학적 방법을 이용해 테러 집단의 명령 전달 체계를 파괴하는 것이다.
팔리 교수에 따르면 대다수 테러 단체는 조직원들이 여러 지역에 분산돼 활동한다. 언뜻 보면 점조직처럼 보이지만 실은 서로 연결돼 있다. 리더가 있고, 리더의 지시를 받은 행동요원이 실제 테러를 일으킨다. 일부 행동요원을 검거하면 다른 행동요원이 테러를 일으키니 소용이 없다. 모든 조직원을 동시에 검거하면 되지만 사실상 불가능하다. 리더 한 사람을 찾아내면 쉽게 조직을 파괴할 수 있지만 남은 조직원이 각기 활동하며 오히려 더 많은 조직을 양산하는 결과로 이어질 수도 있다.
팔리 교수는 단시간에 테러 계획이 확산되는 것을 막기 위해 지도부와 하부 조직원으로 이뤄진 테러 조직의 네트워크를 무력화하는 방법을 생각해 냈다. 대다수 테러 조직은 명령을 주고받는 리더와 부하 조직원 사이에 위계가 있다. 반면 서로 명령을 주고받지 않는 대등한 조직원 사이에는 위계가 없다. 리더의 지시가 말단 조직원까지 도달하면 테러가 일어난다고 할 때, 어느 말단 조직원에게도 지시가 도달하지 못하게 만드는 집합을 수학적으로 찾을 수 있다. 이 집합을 제거하면 리더의 지시가 테러로 실현되는 것을 효율적으로 막을 수 있다. 마치 복잡하게 연결된 수도에서 수도꼭지를 단시간에 효과적으로 잠가 물이 새지 않도록 하는 것과 비슷하다.
팔리 교수는 논문에서 “이 원리를 활용하면 테러 집단의 규모가 아무리 커도 네트워크를 붕괴시킬 최적의 경우와 확률을 찾을 수 있다”고 설명했다.
학자들은 현재 이 이론을 발전시켜 리더가 여러 명인 경우나 조직 내 지시 전달이 수직적으로만 이뤄지지 않는 때에도 효과적으로 테러를 막는 방법을 연구하고 있다.
테러를 저지하는 데 다른 수학적 방법도 활용된다. 벤카트라마난 수브라마니안 미국 다트머스대 컴퓨터과학과 교수 팀은 테러 단체의 무기고가 숨겨진 장소를 계산하고 예측하는 수학적 알고리즘을 2009년 고안했다. 무기고는 공격당했을 때 동시에 폭발하지 않도록 일정 거리를 유지해야 하며, 무기를 옮길 때 적발될 위험이 있기 때문에 적절한 위치에 배치해야 한다는 점에서 착안했다. 연구팀이 고안한 알고리즘은 실제 2010년 미군이 이라크 바그다드의 폭발물 저장고를 찾을 때 중요한 역할을 했다.
캐슬린 칼리 미국 카네기멜런대 교수팀은 신용카드 영수증과 휴대전화 요금, 인터넷 검색 기록을 활용해 테러리스트의 단서를 포착하는 알고리즘을 개발했다.
댓글 0