서울대-충남대 공동 연구팀 실험 통해 ‘교자성’ 존재 밝혀
망간 텔루라이드에서 교자성의 특성을 확인하기 위해 사용된 장비 ‘분자 빔 에피택시(MBE)’. 서울대 제공
외부에 자기장이 없어도 스스로 자기적 성질을 가지는 ‘강자성’과 자성이 없는 상태를 보이는 ‘반강자성’을 동시에 갖는 ‘교자성(알터마그네티즘)’의 존재 증거가 실험을 통해 속속 입증되고 있다. 교자성이 존재한다면 기존 강자성과 반강자성으로 이뤄진 자성 이론 체계를 수정해야 하는 만큼 물리학계에서 뜨거운 화제가 되고 있다.
특히 컴퓨터 메모리 성능을 획기적으로 끌어올릴 수 있는 단서로 여겨지는 교자성 입증에 한국 과학자들의 활약이 두드러지면서 더욱 주목받고 있다. 유럽 등 과학기술 선도국들이 교자성 연구 지원에 본격적으로 나선 가운데 국내 과학자들에 대한 선제적인 지원이 필요하다는 목소리도 나온다.
● 데이터 처리 속도 수십 배 빠른 메모리 나올까
이수영 서울대 물리천문학부 박사과정 연구원이 물질에서 교자성의 성질을 확인하기 위해 측정한 데이터를 확인하고 있다. 서울대 제공
연구팀은 초고진공(UHV)에서 단결정에 물질을 성장시키는 기술인 ‘분자 빔 에피택시(MBE)’를 이용해 망간 텔루라이드(MnTe)에서 교자성의 존재 증거를 확보했다. 이 논문은 그 중요성을 인정받아 학술지의 편집자 추천으로 게재됐다. 교자성의 존재를 실험적으로 입증한 논문은 전 세계를 통틀어 10편 내외에 그친다. 연구를 본격적으로 시작한 지 1년 반 만의 성과다. 이수영 박사과정 연구원은 “이론적으로만 보고되고 있던 교자성의 존재를 명확하게 이해하기 위한 시도들이 이뤄지고 있는 가운데 실험을 통해 강력한 증거를 제시한 것”이라고 설명했다.
교자성에서는 강자성과 반강자성 상태가 공존하는 특별한 자기 상태의 특성을 갖는다. 고체 속의 원자는 자전과 유사한 내부 입자 운동량인 ‘스핀’을 갖는다. 원자의 스핀은 다양한 형태로 이뤄진다. 예를 들어 강자성을 보이는 물체에서는 물질 내부의 모든 스핀이 같은 방향으로 정렬돼 강한 자기장을 만들어 낸다. 일상생활에 많이 쓰이고 있는 자석이 강자성체이다. 강자성체는 자기장을 가하면 쉽게 회전을 뒤집을 수 있어 컴퓨터 메모리의 일종인 자기저항메모리(MRAM)에 쓰이고 있다.
반강자성을 보이는 물체는 이와 달리 인접한 스핀이 서로 반대 방향으로 정렬돼 있어 물질 전체에서는 자성이 ‘0’이 된다. 특정한 온도에서 물질에 자기 분극이 생기는 자화율이 극대화된다는 특징이 있다. 강자성과 반강자성은 자석의 성질을 갖거나 갖지 않는다는 점에서 결정적인 차이가 있다. 새롭게 발견된 교자성은 스핀 분극된 밴드, 스핀 전류 등 강자성과 유사한 성질을 일부 가지면서도 자성이 ‘0’이 되는 특성도 동시에 갖는다.
● 교자성 연구 늘어… 미래 노벨상 가능성 주목
교자성은 기초과학에서도 중요한 주제다. 자연계에 지금까지 설명된 적이 없는 새로운 특성을 갖는 물질이 추가되기 때문이다. 물리학도들이 공부하는 고체물리 교과서가 수정되는 것이다. 이런 이유로 교자성 발견은 일각에서 미래 노벨상 후보로도 거론되고 있다. 앞서 스웨덴의 물리학자 한네스 알벤과 프랑스의 물리학자 루이 네엘은 반강자성과 강자성을 처음 발견한 성과로 1970년 노벨물리학상을 수상하기도 했다. 미래 산업에서의 활용도를 고려했을 때 교자성은 과학계에서 더욱 중요한 연구 주제로 다뤄질 것이라는 게 학계의 예측이다.
과학 선도국들은 이미 교자성 연구에 과감한 투자를 아끼지 않고 있다. 독일은 2022년 약 30억 원을 투자해 교자성을 집중 연구하기 위한 연구 컨소시엄을 구성했다. 기초과학 분야에선 큰 투자 규모다. 지난해 미국 텍사스에서 열린 자성 분야 최대 학회 ‘자성과 자성물질(MMM)’에선 교자성에 대한 별도 세션이 2개나 구성됐다.
박정연 동아사이언스 기자 hesse@donga.com